DS n°4 – CORRECTION CINÉTIQUE – CHIMIE ORGANIQUE

Correction Problème n°1: Décomposition du pentoxyde d'azote

1.

$$v = +d[NO_2]/dt = v_2 + 3.v_3$$

AEQS à NO₃ :
$$d[NO_3]/dt = 0 = v_1 - v_{-1} - v_2$$
 $v_1 = v_{-1} + v_2$
AEQS à NO : $d[NO]/dt = 0 = v_2 - v_3$ $v_2 = v_3$

On a donc
$$v = 4.v_2 = 4.v_3$$

 $v = 4.k_2.[NO_2].[NO_3] = 4.k_3.[N_2O_5].[NO]$

$$\begin{split} v_1 &= v_{-1} + v_2 \; donne : k_1.[N_2O_5].[M] = k_{-1}.[NO_2].[NO_3] + k_2.[NO_2].[NO_3] \\ [NO_2].[NO_3] &= k_1/(k_{-1} + k_2) \; .[N_2O_5].[M] \end{split}$$

Ce qui donne $v = k_1 \cdot k_2 / (k_1 + k_2) \cdot [N_2 O_5] \cdot [M]$

2.

On a donc $v = k.[N_2O_5].[M]$ avec $k = k_1.k_2/(k_1+k_2)$

3.

D'après la loi d'Arrhénius : k = A.exp(-E_a/RT) A et k ont la même unité.

-1 et 2 sont des actes élémentaires d'ordre global 2 donc $v = k.c^2$ v est en $mol \cdot L^{-1} \cdot s^{-1}$ et c en $mol \cdot L^{-1}$ d'où k en $L \cdot mol^{-1} \cdot s^{-1}$

A_{-1} et A_2 sont en L·mol⁻¹·s⁻¹.

4.

$$\begin{split} k_{\text{-1}}/k_2 &= (A_{\text{-1}}.exp(-E_{\text{a-1}}/RT))/(A_2.exp(-E_{\text{a2}}/RT)) \\ A_{\text{-1}} &= A_2 \\ k_{\text{-1}}/k_2 &= exp(-(E_{\text{a-1}}-E_{\text{a2}})/RT) \\ k_{\text{-1}}/k_2 &= 8,3.10^3 \end{split}$$

 $k_1/k_2 >>> 1$ donc k_2 est négligeable devant k_1 .

$k \text{ devient } k = k_1.k_2/k_{-1}$

5.

En appliquant la loi d'Arrhénius à chaque acte élémentaire, il vient :
$$\begin{aligned} k_1.k_2/k_{-1} &= A_1.exp(-E_{a1}/RT) \times A_2.exp(-E_{a2}/RT) \ / \ A_{-1}.exp(-E_{a-1}/RT) \\ k_1.k_2/k_{-1} &= A_1.A_2/A_{-1} \times exp(-(E_{a1}+E_{a2}-E_{a-1})/RT) \end{aligned}$$

 $k_1.k_2/k_{-1}$ s'écrit sous la forme A.exp(- E_a/RT) avec $E_a=E_{a1}+E_{a2}-E_{a-1}$. $E_a=126~kJ\cdot mol^{-1}$

20/05/2024 Cinétique – Chimie organique

6.

Dans le cas où l'on part avec un mélange d'argon en excès, l'argon Ar joue le rôle de M. La vitesse s'écrit : $v = k.[Ar].[N_2O_5]$

Comme l'argon est en excès, il y a dégénérescence de l'ordre : $[Ar](t) \approx [Ar]_0$.

La vitesse devient $v = k_{app} \cdot [N_2O_5]$ avec $k_{app} = k \cdot [Ar]$, la vitesse de la réaction suit une cinétique d'ordre 1.

Dans le second cas où l'on part de N₂O₅ pur, c'est N₂O₅ qui joue le rôle de M.

La vitesse initiale s'écrit $v_0 = k \cdot [N_2 O_5]_0^2$, la vitesse initiale de la réaction suit une cinétique d'ordre 2.

7.

En partant de N₂O₅ pur, au départ seul N₂O₅ peut jouer le rôle de M. Mais progressivement différentes molécules sont formées (NO₂, O₂) qui peuvent donc jouer le rôle de M. L'expression de la vitesse devient différente.

L'expression $v_0 = k \cdot [N_2 O_5]_0^2$ n'est donc valable qu'initialement.

Correction Problème n°2 : Synthèse de la juvabione

1. Pour passer de **A** à **B**, il faut utiliser de l'**éthane-1,2-diol** :

C'est une réaction d'acétalisation.

2.

Pour avoir un bon rendement, il faut déplacer l'équilibre dans le sens direct :

- soit un **retirant d'eau** produite au fur et à mesure de sa formation à l'aide d'un montage Dean-Stark ;
- soit un introduisant un réactif (ici l'éthane-1,2-diol) en excès.

Pour avoir une bonne cinétique, il faut :

- **chauffer** (reflux du solvant)
- introduire un catalyseur (APTS)

3.

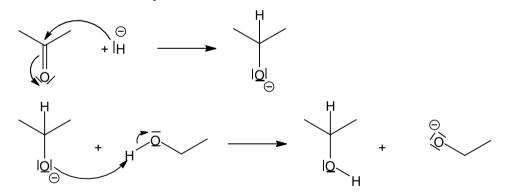
Mécanisme:

A est remplacé par la propanone.

L'APTS fournit les ions H⁺.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array}$$

Le passage de B (alcool) à C (cétone) est une oxydation.


5.

Le passage de **D** (cétone) à **E** (alcool) est une **réduction**. **Il est possible d'utiliser NaBH**₄ **dans l'éthanol CH**₃-**CH**₂-**OH**.

6.

Mécanisme:

D est remplacé par la propanone. BH₄⁻ fournit des ions hydrure H⁻.

7.

L'intermédiaire est :

CH₃O⁻ est l'ion méthanolate.

Il peut être formé à partir de méthanol :

• par réaction acide-base avec les ions hydrure :

 $CH_3OH + H^- = CH_3O^- + H_2$

• par réaction redox avec le sodium métallique :

 $CH_3OH + Na_{(s)} = CH_3O^- + Na^+ + 1/2 H_2$

9.

La 2^e étape est une élimination. Comme la concentration de la base CH₃O⁻ intervient dans la loi de vitesse, c'est que le **mécanisme est de type E**₂.

10.

La première étape sert à activer le caractère nucléofuge de -OH en le remplaçant par -OTs qui est un bon nucléofuge.

Le pyridine sert à capté H⁺ de manière à ne pas former HCl_(g).

Équation-bilan:

11.

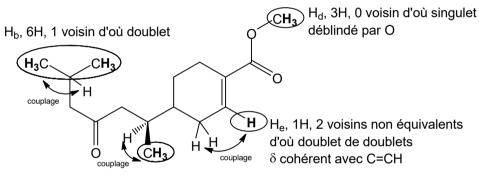
L'élimination est régiosélective et peut donner F et F'.

D'après la règle de Saytzev, on obtient majoritairement l'alcène le plus stable.

F est le produit majoritaire car la double liaison C=C est conjuguée avec la double liaison C=O ce qui est stabilisant.

Pour réaliser la rétro-acétalisation, il faut introduire un excès d'eau (pour déplacer l'équilibre) en milieu acide avec H₂SO₄ (catalyse).

13.

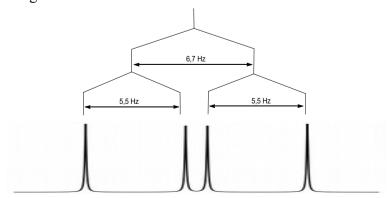

La bande à 1642 cm⁻¹ correspond à la vibration d'élongation de C=C.

La bande à 1715 cm⁻¹ peut correspondre à la vibration d'élongation C=O (cétone) ou C=O (ester conjugué).

En revanche, la bande à 1705 cm⁻¹ est trop basse pour correspondre à l'ester conjugué.

On a donc:

14.



Ha, 3H, 1 voisin d'où doublet

Il reste 13 H qui sortent dans une plage de déplacements chimiques assez voisins et qui correspondent à H_{d} .

15.

Allure du signal doublet de doublets :

L'étape $A \rightarrow B$ permet de protéger la fonction cétone sous forme d'acétal.

L'étape $F \rightarrow juvabione$ permet de déprotéger l'acétal et de retrouver la cétone.

17.

Il est nécessaire de protéger la fonction cétone de la chaîne latérale afin que lors du passage de C à D la fixation de la chaîne -COOCH₃ se fasse exclusivement sur la fonction cétone du cycle.

18.

Si l'oxydation est réalisée sur A, on obtient :

Il n'est pas possible ensuite de protéger sélectivement la fonction cétone de la chaîne latérale par rapport à la fonction cétone du cycle.

La protection doit bien avoir lieu avant l'oxydation.